Emil Artin
Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups

Michael Artin
Representation theory

G a group and V a vector space

$G \times V \rightarrow V, \quad (g, v) \mapsto g \circ v$

Conditions:

$(g_1 \cdot g_2) \circ v = g_1 \circ (g_2 \circ v)$,

$g \circ (a \cdot v + b \cdot w) = a \cdot (g \circ v) + b \cdot (g \circ w)$.

What sort of groups?
What sorts of vector spaces?
Lie theory

Sophus Lie
1842 - 1899

Perspective of geometry and differential equations

“continuous transformation groups”

acting continuously, e.g. on a real or complex vector space V

Lie theory: Understand these continuous representations of G in terms of representations of $\mathfrak{g} = \text{Lie}(G)$.
Algebraic groups

Fact: Each simple complex Lie group can be viewed as zero locus of further polynomial equations inside some $GL_N(\mathbb{C})$.

Claude Chevalley

Algebraic groups over a field k

GL_n is zero locus inside \mathbb{A}^{n^2+1} of $det(x_{i,j}) \cdot z = 1$
What is an algebraic representation of an algebraic group?

If V is finite dimensional, $V = k^\oplus N$, then $G \times V \to V$ is algebraic (a.k.a. “rational representation”) if each matrix coefficient as a function of G is algebraic (i.e., in $k[G]$).

Example: Let $G = GL_2$ act on polynomials of degree n in 2 variables $k[x, y]_n$. Explicitly, we can write this as

$$
\begin{pmatrix}
a & b \\
c & d
\end{pmatrix} \circ x^i y^{n-i} = (ax + by)^i(cx + dy)^{n-i}
$$

Equivalently: comodule structure $\Delta : V \to V \otimes k[G]$, so that $\Delta(v) = \sum v_i \otimes f_i$ with $g \circ v = \sum_i f_i(g)v_i$.
Example: \mathbb{F}_p – field of p-elements. (Every non-zero element has an inverse; add 1 to itself p times and the answer is 0.)

Example: $q = p^d$, $d > 0$. There is a unique finite field \mathbb{F}_q of order q.

Example: If F is a field of characteristic $p > 0$, then so is $F(x)$.

If $X \subset \mathbb{A}^N$ is the zero locus of polynomial equations with coefficients in \mathbb{F}_q, then sending $(x_1, \ldots, x_N) \in \mathbb{A}^N$ to $(x_1^q, \ldots, x_N^q) \in \mathbb{A}^N$ sends points of X to points of X.

Key point: $(a + b)^p = a^p + b^p$ in characteristic p.

Frobenius map $F^q : X \rightarrow X$.
Wildness for finite groups, char $p > 0$

k-linear actions of $\mathbb{Z}/p \times \mathbb{Z}/p$ on k-vector space V correspond to actions of

$$k[g, h]/(g^p = 1 = h^p) \cong k[x, y]/(x^p, y^p), \quad g = x+1, \ h = y+1$$

Example: Indecomposable, not irreducible

$\mathbb{Z}/p \times \mathbb{Z}/p$ has wild representation type (for $p > 2$).
Intertwining Representation Theory and Cohomology

Eric M. Friedlander

Support varieties for algebraic groups

Solomon Lefschetz

1884 - 1972

Applications of algebraic topology to algebraic geometry

(classical) algebraic geometry

Characteristic \(p \) STINKS!
Cohomology

Definition

If $G \times M \to M$ is a G-action on the k-vector space M, then

$$H^0(G, M) = M^G = \{ m \in M; g \circ m = m, \forall g \in G \}.$$

$$H^i(G, M) = (R^i(H^0(G, -))(M).$$

If every indecomposable G-module is irreducible, then $H^i(G, M) = 0$, $i > 0$.

$H^1(G, M)$ equals the group of equivalence classes of short exact sequences $0 \to M \to E \to k \to 0$ of G-modules (i.e., extensions of k by M).
Cohomology and Geometry

Daniel Quillen

1940 – 2011

Spectrum of cohomology of a finite group G

$\text{Spec}(H^*(G, k))$, affine algebraic variety

Extension of Quillen by J. Carlson et al: use spirit of Quillen to study representations of a finite group G.
Failure of Lie theory over fields of characteristic $p > 0$

EXAMPLE SL_2 action on the homogeneous polynomials of degree precisely p in two variables: $V = k[x, y]^p$. Inside V, there is a 2-dimensional subrepresentation $W \subset V$ consisting of polynomials linear in x^p, y^p. There is no splitting of $W \subset V$ as representations of SL_2.

V is *indecomposable*, but not *irreducible*.

Much WORSE news:
If action of SL_2 on vector space V factors through $F : SL_2 \to SL_2$, then Lie algebra action is *trivial* (because differential $d(F) = 0 : \mathfrak{sl}_2 \to \mathfrak{sl}_2$).
Functors and group schemes

Alexander Grothendieck
1928 - 2014

Functorial point of view

A group scheme over k is a \textit{functor}

$$(\text{comm. } k\text{-alg}) \to \text{(groups)}.$$

Replace the Lie algebra of G by "\textit{infinitesimal neighborhoods of the identity}”, so called “Frobenius kernels” $G_{(r)}$.

Frobenius kernels

One can view $G_r \subset G$ as a representable subfunctor of G
(comm. k–alg) \to (groups), \(R \mapsto \ker\{ F^r : G(R) \to G(R) \} \).

Example

$GL_N(r)$ has coordinate algebra $k[X_{i,j}]/(X_{i,j}^{p^r} - \delta_{i,j})$, a finite dimensional, commutative, local k-algebra; multiplication of dual $kGL_N(r)$ is given by the multiplication of GL_N.

kG_r is always a f. dim, co-commutative Hopf algebra.

Given a representation $G \times V \to V$, this structure is faithfully reflected by the collection of structures $\{ G_r \times V \to V \}$.
The additive group \mathbb{G}_a

Definition

\mathbb{G}_a: (comm. k-alg) \rightarrow (abelian groups); $\mathbb{G}_a(R) = R^+$. $k[\mathbb{G}_a] = k[T]$; group structure determined by comultiplication

$$\Delta : k[T] \rightarrow k[T] \otimes k[T], \quad T \mapsto (T \otimes 1) + (1 \otimes T).$$

Lemma

A \mathbb{G}_a-action on a k-vector space V is naturally equivalent to the following data:

An infinite sequence of p-nilpotent, pairwise commuting: operators $u_0, u_1, u_2, u_3 \ldots : V \rightarrow V$ such that for any $v \in V$ all but finitely many $u_i(v)$ are 0.
Varieties for \mathbb{G}_a-modules

Definition

The cohomological variety $V^{coh}(\mathbb{G}_a) \equiv \text{Spec}_{cont} H^*(\mathbb{G}_a, k)$.

The 1-parameter subgroup variety $V(\mathbb{G}_a) \equiv \{ \psi : \mathbb{G}_a \rightarrow \mathbb{G}_a \}$.

Proposition

$V^{coh}(\mathbb{G}_a) \simeq \mathbb{A}^\infty \simeq V(\mathbb{G}_a)$.

Definition

$V^{coh}(\mathbb{G}_a)_M \equiv \{ p \subset H^*(\mathbb{G}_a, k) : p \supset \text{ann}(H^*(\mathbb{G}_a, M)) \}$.

$V(\mathbb{G}_a)_M \equiv \{ \psi : \mathbb{G}_a \rightarrow \mathbb{G}_a : \text{such that NOT all blocks of size p for action at } \psi \}$.
Support varieties for \mathbb{G}_a

For M finite dimensional, $V^{coh}(\mathbb{G}_a)_M = V(\mathbb{G}_a)_M \subset \mathbb{A}^\infty$.

- Many “standard” properties including $V(\mathbb{G}_a)_M = \{0\}$ if M is injective, $V(\mathbb{G}_a)_M = \mathbb{A}^\infty$ if $M = k$.

- “Mock injective” modules: there exist (necessarily infinite dimensional) \mathbb{G}_a-modules M which are not injective, but $V(\mathbb{G}_a)_M = \{0\}$.

- Know exactly which subvarieties $X \subset \mathbb{A}^\infty$ are of form $X = V(\mathbb{G}_a)_M$ for some finite dimensional \mathbb{G}_a-module M.

- Lots of interesting questions about which $X \subset \mathbb{A}^\infty$ are of form $X = V(\mathbb{G}_a)_M$ for an arbitrary \mathbb{G}_a-module M.
Other algebraic groups G

Cohomology NOT very useful in general. For example, $H^*(G, k)$ is trivial for G a simple algebraic group.

Will describe a theory using 1-parameter subgroups $\psi : \mathbb{G}_a \rightarrow G$ which has many useful properties.

For G unipotent (e.g., $U_N \subset GL_N$), then study of 1-parameter subgroups leads to cohomological calculations.
1-parameter subgroups for infinitesimal kernels $G(r)$

Andrei Suslin

Joint work: Quillen’s geometry extends to Frobenius kernels.

computations for $H^*(G(r), k)$ in terms of the variety of $V(G(r))$ of infinitesimal 1-parameter subgroups $G_{a(r)} \to G(r)$.

Theorem [Suslin-F-Bendel] $V^{coh}(G(r))_M$ can be identified with the variety $V(G(r))_M$.

Action of G on M at a 1-parameter subgroup

Theorem

Assume that G is a linear algebra group of exponential type. The ind-variety $V(G)$ of 1-parameter subgroups of G is \simeq variety $\mathcal{C}_\infty(\mathcal{N}_p(\text{Lie}(G)))$ consisting of finite sequences of p-nilpotent, pair-wise commuting elements of $\text{Lie}(G)$:

$$\{B \in \mathcal{C}_\infty(\mathcal{N}_p(\text{Lie}(G)))\} \sim V(G), \quad B \mapsto \mathcal{E}_B.$$

Definition

The action on a rational G-module M at the 1-parameter subgroup $\mathcal{E}_B : \mathbb{G}_a \to G$ is the action of the p-nilpotent operator

$$\sum_{s \geq 0} (\mathcal{E}_{B_s})^*(u_s) \in kG.$$
Formulation of support variety $V(G)_M$

Definition

The support variety $V(G)_M \subset V(G)$ of M is the subset of those $B \in C_\infty(\mathcal{N}_p(Lie(G)))$ such that ψ_B has some block of size $< p$.

- For M finite dimensional, $V(G)_M$ carries the same information as the earlier considered $V(G_r)_M$ for $r >> 0$.
- For $G = \mathbb{G}_a$, $V(\mathbb{G}_a)_M \simeq V^{coh}(\mathbb{G}_a)_M$.
- For $G = U_N$, $V^{coh}(U_N)_M$ is much less informative than $V(U_N)_M$.
- Leads to interesting classes of mock injective and mock trivial G-modules.
- Can compute some examples of the form $V(G)_{G/H}$.
“Classical properties” of \(M \mapsto V(G)_M \)

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tensor product: (V(G)_{M \otimes N} = V(G)_M \cap V(G)_N).</td>
</tr>
<tr>
<td>2. Two out of three: If (0 \to M_1 \to M_2 \to M_3 \to 0), then the support variety (V(G)_{M_i}) of one of the (M_i) is contained in the union of the support varieties of the other two.</td>
</tr>
</tbody>
</table>
| 3. **For the Frobenius twist** \(M^{(1)} \) of \(M \), \[
V(G)_{M^{(1)}} = \{ \mathcal{E}_{(B_0, B_1, B_2 \ldots)} \in V(G) : \mathcal{E}_{(B_1^{(1)}, B_2^{(1)}, \ldots)} \in V(G)_M \}. \]
| 4. For any \(r > 0 \), the restriction of \(M \) to \(kG(r) \) is injective (equivalently, projective) if and only if the intersection of \(V(G)_M \) with the subset \(\{ \psi_B : B_s = 0, s > r \} \subset V(G) \) equals \(\{ \mathcal{E}_0 \} \). |
Strategy: For computations of $H^*(U_N(r), k)$, $H^*(U_N, k)$:

- (F-Suslin) give a means of construction of cohomology classes.
- (Suslin-F-Bendel) give detection of cohomology modulo nilpotents.
- Use the descending central series

$$U_N = \Gamma_1 \supset \Gamma_2 \supset \cdots \subset \Gamma_N = \{e\}$$

with each subquotient a product of \mathbb{G}_a’s.

- Key tool is the T_N-equivariant Lyndon-Hochschild-Serre spectral sequence along with the action of the Steenrod algebra.
LHS Spectral sequence

Key technique for computation is the T_N-equivariant Hochschild-Serre spectral sequence

$$E_2^{*,*} = H^*(U_N/\Gamma_{v-1}, k) \otimes H^*(\Gamma_{v-1}/\Gamma_v, k) \Rightarrow H^*(U_N/\Gamma_v, k)$$

for terms of the descending central series for U_N.

Compute differentials using the Steenrod algebra: for example, $d^{0,2p^j}_{2p^j+1}((x^{(i)}_{s,t})^{p^j})$ equals

$$\sum_{t=1}^{v-1}(x^{(i)}_{s,s+t})^{p^j} \otimes y^{(i+1+j)}_{s+t,s+v} - (x^{(i)}_{s+t,s+v})^{p^j} \otimes y^{(i+1+j)}_{s,s+t}).$$

We conclude the relation

$$(x^{(i)}_{s,s+1})^{p^j+1} \cdot (x^{(i)}_{s_1,s+2})^{i+1+j} - (x^{(i)}_{s+1,s+2})^{p^j+1} \cdot (x^{(i)}_{s,s+1})^{i+1+j} \quad 0 \leq j.$$
Calculations of cohomology

Theorem

For $p \geq N - 1$, $H^*((U_N)_r, k)$ modulo nilpotents is given by *explicit construction* augmenting $k[V_r(U_N)]$.

Similar statement of terms U_N/Γ_v of lower central series.

Remark

This improves [Suslin-F-Bendel] in that we can compare for increasing r, take the *limit as r goes to ∞.*

Theorem

$\text{Spec}_{\text{cont}} H^\bullet(U_3, k)$ is determined by the image of $H^\bullet(U_3/\Gamma, k) \to H^\bullet(U_3, k)$.
Continuous prime ideal spectrum

Definition

\[V^{coh}(G) \equiv \lim_{\rightarrow r} \text{im}\{\text{Spec } H^\bullet(G(r), k) \to \text{Spec } H^\bullet(G, k)\}. \]

Example

\[H^*(\mathbb{G}_a, k) = S^*(x^{(i)}, i \geq 1) \otimes \Lambda^*(y^{(i)}, i \geq 0), \] so that

\[V^{coh}(\mathbb{G}_a) \cong \mathbb{A}^\infty. \]

Proposition

For \(p \geq 3 \), \(H^\bullet(U_N, k) \) embeds in \(\lim_{\leftarrow r} H^\bullet(U_N(r), k) \).

Proposition

There exists a *natural, surjective map*

\[\text{Proj } V(G)_M \to \text{Proj } V^{coh}(G)_M. \]